If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-1004=0
a = 1; b = 0; c = -1004;
Δ = b2-4ac
Δ = 02-4·1·(-1004)
Δ = 4016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4016}=\sqrt{16*251}=\sqrt{16}*\sqrt{251}=4\sqrt{251}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{251}}{2*1}=\frac{0-4\sqrt{251}}{2} =-\frac{4\sqrt{251}}{2} =-2\sqrt{251} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{251}}{2*1}=\frac{0+4\sqrt{251}}{2} =\frac{4\sqrt{251}}{2} =2\sqrt{251} $
| 30-15x=6(6-3x) | | (2x-8)(9x+1)=0 | | 1.150=6m | | 8+5c=7c-2* | | 7x-14-2x-6=0 | | 1/4=3/5y | | 2n•4=10 | | 26-7m-9=-2m | | 30-15x=6 | | 52=5.2c | | (3x+38)=(7x-2) | | Y=5/3(x-1) | | 7x-10-1x=2x+26 | | 8x-7=3(2x-1)+2x-4 | | 18.5x+6.5x-2.8x=149.10 | | -13=9-m | | 4x+8=-5x+3 | | P=x·(3x-4) | | ½x+4=-2½x–5 | | 87x+9-16+3=124.50 | | 4x+8=16 | | 29.5x+45x=0.07x+90x | | 29.5x+45=0.07x+90 | | 45X+29.5=90x+0.07 | | 7x+21+x=-19 | | j/3=4.5= | | x+(x+14)+40=116 | | 29.5x+40=0.07x+90 | | h/5=5.1= | | 3x+2=2×+13÷3 | | 84-2x=62 | | 4n+9+8n-12= |